
Hash functions – MAC – Digital
signatures

Facilitating GDPR compliance for SMEs and promoting Data Protection by Design in ICT products

and services (www.bydesign-project.eu)

This presentation has been based on material provided by Dr. K. Limniotis (HDPA)

file:///C:/Users/gpanagopoulou/Desktop/ΒΔ/www.bydesign-project.eu

Further security requirements

2

• Entity authentication: Need to ensure that the identity of a user is
genuine (there is no masquerading)

• Data integrity: Need to ensure that the data themselves have not
been altered

• Cryptography also examines these goals

• Several cryptographic primitives
• Cryptographic hash functions have a crucial role

Cryptographic hash functions

3

• A cryptographic primitive which maps any input to an output of fixed length,
relatively small, satisfying some specific properties

• This output is being called fingerprint or digest of the message

Properties of hash functions in
simple words (informal..)

4

• condenses arbitrary message to fixed size

• It is not possible to obtain a message from its fingerprint (non-
reversible function)

• It is practically impossible to find two distinct messages with the
same digest

• They are commonly used to detect changes to message
• Can be used in various ways with message

• most often to create a digital signature, as shown next

An example

5

• The output is of fixed length, regardless the size of the input

Requirements for Hash Functions

6

• MDC (Modification Detection Code)
• Simple hash function without the usage of any key.

• MAC (Message Authentication Code)
• A keyed hash function

Message Detection Code (MDC)

7

• It is the classical notion of a
simple hash function

• The term MDC is not so
commonly used nowadays

• The message is augmented
by its fingerprint, before its
transmission

• The whole augmented
message is being encrypted,
towards achieving
confidentiality

• The message digest
should not be
computed over the
encrypted (simple)
message (why?)

Use of a hash function
for message integrity

8

• If the encrypted message is being modified/altered during
the transmission, the receiver will be able to detect this!!

• Recall the properties of hash functions…

Gains

9

• Message integrity

• Can be used for creating digital signatures for entity authentication
(described in the sequel)

• Some common uses of hash functions

• Secure processing of users passwords
• Passwords are not stored in plaintext

• In forensics analysis, to check/verify the validity of a file (see,
e.g. https://gnupg.org/download/integrity_check.html)

https://gnupg.org/download/integrity_check.html

MD2, MD4 and MD5 hash
functions

10

• A family of hash functions invented by Ronald Rivest
• They all generate 128 bit as output

• MD2: 1989
• A collision found in 1995

• MD4: 1990
• A collision found in 1995

• MD5: 1992
• Internet standard (RFC 1321)
• Since 1997 it was believed that collisions could be found – this came true in

2004
• Nowadays, it is not considered as secure
• 2012: According to Microsoft, a collision in MD5 was exploited by attackers to

launch the malicious software Flame

MD5 – General description

11

A collision in MD5

12

• These two messages:

which are different at 6 (hexadecimal) places, have the same MD5
digest: 79054025255fb1a26e4bc422aef54eb4

Secure Hash Algorithm (SHA)

13

• Developed by the National Institute of Standards and Technology (NIST) and
published as a federal information processing standard (FIPS 180) in 1993

• A revised version was issued as FIPS 180-1 in 1995 and is generally referred to as
SHA-1

• Based on the hash function MD4 and its design closely models MD4

• SHA-1 produces a hash value of 160 bits

• In 2005, a research team described an attack in which two separate messages
could be found that deliver the same SHA-1 hash using 269 operations

• This result has hastened the transition to newer, longer versions of SHA.

Revisions on SHA

14

• In 2002, NIST produced a revised version of the standard, FIPS 180-2, that
defined three new versions of SHA, with hash value lengths of 256, 384, and
512 bits,

• Known as SHA-256, SHA-384, and SHA-512.

• Collectively, these are known as SHA-2

• Same underlying structure with SHA-1

• In 2005, NIST announced the intention to phase out approval of SHA-1 and
move to a reliance on the other SHA versions by 2010.

An overview of SHA-512

15

• The compression function is the “heart” of the algorithm

New standard: SHA-3

16

Collissions in SHA-1

17

• It was known for year that it was simply a matter of time to practically find
collisions in SHA-1

• February 2017: Researchers managed to break SHA-1 in practice

• See https://security.googleblog.com/2017/02/announcing-first-sha1-
collision.html

• https://shattered.io/ (two different .pdf files with the same SHA-1
fingerprint)

• Online tool: https://alf.nu/SHA1

• More recent and powerful attacks (collisions) on SHA-1:

• https://portswigger.net/daily-swig/researchers-demonstrate-practical-break-of-
sha-1-hash-function

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://shattered.io/
https://alf.nu/SHA1
https://portswigger.net/daily-swig/researchers-demonstrate-practical-break-of-sha-1-hash-function

Limitation of Using Hash Functions
for Authentication

18

• Require an authentic channel to transmit the hash of a
message

• Without such a channel, it is insecure, because anyone can
compute the hash value of any message, as the hash function is
public

• Such a channel may not always exist

• How to address this?
• use more than one hash functions

• use a key to select which one to use

Message Authentication Code
(MAC)

19

• A hash algorithm that produces, for any arbitrary message, a fixed-length
output

• The output is dependent on both the message and a secret key (keyed-hash
function)

• It resembles encryption, but it is not reversible!!

• The output of a MAC is also called, for simplicity, MAC

• Also being called as keyed hash function

• The MAC is added at the end of the message

• The recipient, who knows the secret key, checks the MAC with regard to its
validity

• Any modification in the message or in the MAC during the transmission will
be identifiable (see next slide)

MAC for message integrity

20

Sender Receiver

Message Authentication Code

21

• A MAC scheme is actually a hash family, used for message authentication

• MAC(K,M) = HK(M)

• The sender and the receiver share secret K

• The sender sends (M, Hk(M))

• The receiver receives (X,Y) (where Χ is the message and Y its MAC value)
and verifies that HK(X)=Y, if so, then accepts the message as from the
sender

• To be secure, an adversary shouldn’t be able to come up with (X’,Y’) such
that HK(X’)=Y’.

• Recall that the adversary does not know the key K

Properties of a MAC

22

• It is a many-to-one function
• There always exist different messages with the same MAC but,

despite their existence, they cannot be found in practice

• If confidentiality is also a goal, then the message needs to
be additionally encrypted (possibly with another key)

• ΜAC can be computed over the initial message or the encrypted
message (see next slide)

Possible uses of MAC

23

MAC-Then-
Encrypt

Encrypt-
Then-MAC

MAC-only
(no
encryption)

Encrypt-then-MAC (EtM)

24

• Many security protocols
support it – e.g. the IPSec

MAC-then-Encrypt (MtE)

25

• Many security protocols
support it – e.g. SSL\TLS
(the versions until 1.2 –
not in the most recent
version 1.3)

Encrypt-and-MAC (E&M)

26

• Some block ciphers
modes of operation
compute
simultaneously with the
ciphertext and a MAC
(being called “tag” in
this context).

• It is a special case of
E&M

• The most prominent
one: The Galois
Counter Mode
(GCM)

Gains

27

• ΜΑC ensures the following:
• The message has not been modified (message integrity)

• If an attacker alters the message or its MAC, this will be detectable from
the receiver

• He could produce a valid pair of a message and its MAC, only if he/she
knew the secret key

• The source of the message is genuine (sender authentication)
• Provided that nobody else has the key that has been used for the MAC

Digital Signatures

28

• Data that are being attached to a message, aiming to verify the
identity of the sender as well as the integrity of the data

• A digital signature has the following properties:
• Only the signer can create his signature (e.g. none can create Bob’s

signature)

• It allows others to verify the validity of the signature (e.g. that indeed Bob is
the signer)

• It is uniquely associated with the message (“bound with a message”) so as
to ensure its integrity; a valid signature for a message cannot moved to sign
another message

• The signer cannot deny that he signed (non-repudiation property)

Digital signature vs.
Hand-made signature

29

• Actually, the same meaning in terms of verifying the signer

• However, hand-made signature is always the same (for the same
signer), whereas digital signatures are different for each possible
message, even for the same signer

• And, thus, message integrity is also ensured

Digital Signature Requirements

30

• must depend on the message signed

• must use information unique to sender

• to prevent both forgery and denial

• must be relatively easy to produce

• must be relatively easy to recognize & verify

• be computationally infeasible to forge

• with new message for existing digital signature

• with fraudulent digital signature for given message

• be practical

• Cryptographic primitives for the “typical” digital signatures
• Public key ciphers
• Hash functions

How a Digital Signature is created?

31

• A Digital Signature is the result of encrypting the Hash of the data to
be exchanged.

• Recall that the Hash uniquely represents the original data.

• The probability of producing the same Hash with two sets of different
data is negligible

• Signature Process is opposite to Encryption Process

• Private Key is used to Sign (encrypt) Data

• Public Key is used to verify (decrypt) Signature

A generic model of creating
digital signatures

32

To create a digital signature:

1.Hash (digest) the data using one
of the supported Hashing
algorithms, e.g., SHA-2, SHA-3.
We get the digest MD.

2.Encrypt the hashed data using
the sender’s private key. We get
the digital signature DS

3. Append the signature to the end
of the data that was signed (a
copy of the sender’s public key
is also generally attached)

Initial message

MD

DS

DS Initial message

Hashing

Encryption with the

Sender’s private key

A generic model of verifying
a digital signature

33

To verify the signature:

4. Hash the original data using
the same hashing algorithm.
Its digest MD is computed

5. Decrypt the digital signature
using the sender’s public key.

6. Compare the results of the
hashing and the decryption. If
the values match then the
signature is verified. If the
values do not match, then the
data or signature was probably
modified in transit.

Received message

MD

DS

MD

5.

Hashing
decryption with the

Sender’s public key

Digital Signature Model
(with data confidentiality)

34

• Note the difference between public
key encryption and signatures:

• In encryption, the sender uses the
recipient’s public key

• In digital signatures, the sender
(signer) uses its own private key

Digital signatures algorithms

35

• Most of the known public key ciphers can be used to create
digital signatures

• Most commonly used:
• RSA
• Elliptic curve

• DSA (Digital Signature Algorithm)
• An adaptation of a known public key encryption algorithm, being

called El Gamal
• Most commonly used is its Elliptic Curve variant (ECDSA)

• It is being used in the Digital Signature Standard (DSS)
• NIST Standard - FIPS 186 (not discussed here)

RSA Signatures

36

• Public key is (n,e), private key is d

• To sign message m: s = (hash(m))d mod n
• Signing and decryption are the same mathematical operation in RSA

• To verify signature s on message m:

se mod n = (hash(m)d)e mod n = hash(m)
• Verification and encryption are the same mathematical operation in

RSA

• PKCS #1 (Public Key Cryptography Standard)

Digital signatures

37

• Sender authentication is in place

• Verification of a sender’s identity (and the integrity of message)
can be performed by anyone, since anyone has access to
sender’s public key

• Any user can produce a digital signature that suffices to
authenticate her identity and the message integrity, whilst any
other user can proceed with such a verification (i.e. to check
the validity of the signature).

• Note that computing a MAC is usually much faster than
producing a digital signature

An overall comparison

38

• Note that MACs do not support the non-repudiation property:
Any user who can verify a MAC is also capable of generating
MACs for other messages (because he knows the secret key)

Trusted third parties and
Digital Certificates

39

• Before B accepts a message with A’s Digital Signature, B wants
to be sure that the public key belongs to A and not to someone
masquerading as A on an open network

• One way to be sure, is to use a trusted third party to
authenticate that the public key belongs to A. Such a party is
known as a Certification Authority (CA)

• The analogue to a “solicitor” in a digital world

• Once A has provided proof of identity, the Certification
Authority creates a message containing A’s name and public
key. This message is known as a Digital Certificate.

Certification Authority – CA

40

• A trusted authority (Trusted Third Party – TTP) which
issues digital certificates for entities, containing their
public keys

• Since they are trusted, we are ensured for the validity
of the certificates – that is for the validity of the public
key of the certificate’s owner

Actions of a CA

41

• Certificate issuance

• Certificate renewal

• Certificate revocation

• Certificate suspension/activation

• and others…(including generation of public-private
keys, timestamping procedures etc.)

Digital Certificates

42

• A certificate is being issued and digitally signed by a C
• The signature ensures the geniality of the certificate (since

the CA is trusted; equivalently, anyone can verify the CA’s
signature, whereas nobody can create a CA’s signature)

• By these means, it is ensured that an entity indeed has a public
key (the one that is being “written” within the corresponding
certificate)

• The owner of a certificate is able to provide digital signatures

• Common standard: Χ.509

Using Public-Key Certificates

43

Authenticity of public keys is reduced to
authenticity of one key (CA’s public key)

X.509 Authentication Service

44

• Internet standard (1988-2000)

• Specifies certificate format
• X.509 certificates are used in widely used protocols such as IPsec

and SSL/TLS

• Specifies certificate directory service
• For retrieving other users’ CA-certified public keys

• Specifies a set of authentication protocols
• For proving identity using public-key signatures

• Does not specify crypto algorithms
• Can use it with any digital signature scheme and hash function,

but hashing is required before signing

Digital Certificates - structure

45

• Digital Certificate is the secure binding between an entity and his/her public key,
such that we have data integrity, authentication and non-repudiation.

• The secure binding is done by a trusted third party, known as Certificate
Authority.

• They overcome the short comings of public key cryptography, which is that
anyone can purport to be the owner of public key.

• Contains
• The name of an issuer, a CA that issued the certificate.
• Name of the entity, who is issued this certificate.
• The dates between which the certificate is valid.
• The certificate’s serial number, which is guaranteed by the CA to be unique.
• Public key
• The uses of the key-pair (the public key and the associated private key)

identified in the certificate.

X. 509 certificate

46

• User A obtains user’s B public key
via getting the digital certificate of
B, which contains his public key

• This certificate is digitally signed
by a CA, which is a trusted third
party

• A in ensured for the validity of the
certificate because she trusts the
CA which has signed it (whereas
A can validate CA’s signature)

• Hence, by these means, A is
ensured for obtaining the
genuine public key of B

TLS protocol

47

• Transport Layer Security (TLS): Security protocol for establishing
a secure connection between a client and a server

• Server’s authentication is ensured by using digital certificates
• Signed by a trusted CA

• Data between server and client are encrypted though a symmetric
cipher

• A MAC is being also used for message authnentication
• Or an authenticated encryption

• For securely exchanging the keys for the symmetric cipher and the
MAC, a public key algorithm is being used

• The server’s public key lies inside the server’s certificate
• Since the certificate is signed by a CA, man-in-the-middle attacks are efficiently

addressed*

• TLS provides security services to higher protocols
• HTTTP over TLS: HTTPS

Public Key Security

48

• Public Key Technology Best Suited to Solve Business Needs
• Infrastructure = Certification Authorities – known as Public Key

Infrastructure (PKI)

Services

Public Key Technology

Digital Certificates

Certification Authorities

Security Management

Technology

Infrastructure

C
O

N
F

ID
E

N
T

IA
L

IT
Y

A
U

T
H

E
N

T
IC

A
T

IO
N

IN
T

E
G

R
IT

Y

N
O

N
-R

E
P

U
D

IA
T

IO
N

X. 509 certificate

49

Public Key Infrastructure (PKI):
the set of protocols, services,
standards, entities etc.
regarding the handling of digital
certificates

• Main certification providers

• Entrust, Verisign, RSA
Security, Equifax …

In practice

50

• Platforms like Windows, macOS, Android, maintain a
system root store that is used to determine if a
certificate issued by a particular Certificate Authority
(CA) is trusted

• In Android (versions larger than 8.0), follow these
steps:

• Open Settings
• Tap “Security & location”
• Tap “Encryption & credentials”
• Tap “Trusted credentials.” This will display a list of all trusted

certs on the device.

